物联网通信技术的优缺点

一:概述

物联网的无线通信技术很多,主要分为两类:一类是Zigbee、WiFi、蓝牙、Z-wave等短距离通信技术;另一类是LPWAN(low-power Wide-Area Network,低功耗广域网),即广域网通信技术。LPWA又可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱下,3GPP支持的2/3/4G蜂窝通信技术,比如EC-GSM、LTE Cat-m、NB-IoT等。

img

二:系统架构

物联网的基本架构包括三个层面:感知层、网络层和应用层。

img

感知层

通过传感器采集某些数据(声、光、电等),基于网络层的终端模组,对接到网络层的基站,实现数据采集后的传输。

网络层

负责将感知层采集的数据进行回传,基于不同特点采用不同的通信协议技术进行回传至关重要,这也是本文重点所讨论的内容。

应用层

可以理解为物联网的数据平台和业务平台。数据平台作为所有物联网终端数据的集合点,负责数据的统一存储、分析等,北向通过标准的API接口提供给业务平台做数据调用;业务平台基于数据平台的原始数据实现各种业务逻辑,对外呈现的是服务。

其中,聚焦于网络层的通信协议,则是群雄逐鹿,百家争鸣。

三:有线通信技术

以太网

img

以太网(Ethernet)是一种局域网通信技术, IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。 以太网使用双绞线作为传输媒介,在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1KMb/s和10KMb/s的速率。

以太网技术的最大优点是它是目前应用最普遍的局域网技术,已经逐步取代了其他局域网标准如令牌环、FDDI和ARCNET等。现在我们熟悉的互联网就是指所有这些大大小小的局域网连接在一起以后,形成的覆盖全球的网络。按本书“物联网”也有出生日期一节的观点,物联网是连接的物超过人口以后的互联网,因而实际中,任何连接到物联网的物总是连接到一个以太网的终端上的。

串口通信技术

img

串口(Serial port)是一种非常通用的用于设备之间通信的接口,也广泛用于设备以及仪器仪表之间的通信。常见的串口有RS-232(使用 25 针或 9 针连接器)和工业电脑应用的半双工RS-485与全双工RS-422。

串口通信使用串行方式进行通信,即串口按位(bit)发送和接收字节序列,典型地,串口用于ASCII码字符的传输。串口通信使用3根线完成:地线,发送和接收。串口通信可以在使用发送线发送数据的同时用接受线接收数据,它很简单并且能够实现较远距离的通信,其通信长度可达1200米。

优点 :串口通信的最大有点就是普及率高,串口至今PC电脑还是标配,通常为了方便连接打印机,大部分的工业设备都有串口,那些没有串口的设备,在其开发时,常见方法也是通过串口连接到进行开发的电脑上的,因此串口是设备进行通信的最简单最容易的方法。

注:另外值得一提的是,如果不考虑连接串口的线缆,串口通信的成本非常低。

缺点 :串口通信的组网能力差,虽然通常情况比无线稳定,但是在工业环境中,也容易受到线缆所处环境的电磁影响出现通信不稳定,甚至串口烧坏的情况。串口的通信速度以太网比起来还是有很大差距,一般来讲,只适合低速率和小数据量的通信。

Modbus

img

随着PLC在工业领域的广泛应用,Modbus也成为工业领域最受欢迎的通信协议,它采用主/从(Master/Slave)方式通信,即一对多的方式连接,一个主控制器最多可以支持247个从属控制器。

优点: Modbus的主要优点有: – 标准化、开放,免费使用,无许可证费,无需知识产权授权。 – 支持多种电气接口,如串口和Ethernet接口等,支持多种传输介质,如双绞线、光纤、无线等。 – Modbus协议的帧格式简单、紧凑,通俗易懂。易开发,易用。

缺点: Modbus主要存在以下问题: – 组网能力差,只有主从方式通信 – 网络规模有限,从属控制器数量限制了网络规模 – 安全性差,无认证、无权限管理,明文传输使得它在非受控环境下是非常有风险的。

四:无线短距离通信技术

当下流行的Wi-Fi技术,数据传输速度飞快,尤其802.11ax技术即将诞生,理论上8条流不是梦。然而伴随速度的提升,耗电量急剧增大,且传输距离也成为难题,长距离传输需要每隔一定距离放一个AP进行桥接,必将大幅提升成本。因此,Wi-Fi技术更适合供PC及PDA等终端应用的室内无线上网场景。

蓝牙技术与Wi-Fi在2.4G频段上有交接,所以同频段会有一些干扰问题的产生。蓝牙的耗电情况比Wi-Fi稍微低一些, 而传输速度远不及Wi-Fi。在资产追踪、定位标签以及医疗传感器等场景下应用较多,如智能手表,蓝牙定位等。

WIFI

Wi-Fi联盟成立于1999年,当时的名称叫做Wireless Ethernet Compatibility Alliance(WECA)。在2002年10月,正式改名为Wi-Fi Alliance。Wi-Fi联盟致力解决匹配802.11标准的产品的生产和设备兼容性问题,并且拥有Wi-Fi这个品牌。 2016年WiFi联盟最新公布的802.11ah WiFi标准—WiFi HaLow,使得WiFi可以被运用到更多地方如:小尺寸、电池供电的可穿戴设备同时也适用于工业设施内的部署,以及介于两者之间的应用。HaLow采用900MHz频段,低于当前WiFi的2.4GHz和5GHz频段。更低功耗,同时HaLow的覆盖范围可以达到1公里,信号更强,且不容易被干扰。这些特点使得WiFi更加顺应了物联网时代的发展。

优点 :Wi-Fi的优点是局域网部署无需使用电线,降低部署和扩充的成本。由于Wi-Fi模块的价位持续下跌,使得它已成为企业和家庭的普遍的基础设施。另外,根据Wi-Fi联盟指定,“Wi-Fi认证”是向后兼容的。它指定一套全球统一标准:不同于移动电话,任何Wi-Fi标准设备将在世界上任何地方正确运行。

缺点: Wi-Fi的缺点是通信距离有限,稳定性差,功耗较大,组网能力差,其安全性也遭到不少人的批评。通常WiFi技术使用2.4GHz和5GHz周围频段,但在全球各地的频率分配和操作限制也不完全相同,造成一些混乱现象。

蓝牙(Bluetooth)

蓝牙(BlueTooth)是一种设备之间进行无线通信的技术,曾经标准化为IEEE 802.15.1,现在蓝牙技术联盟(SIG)来负责维护其技术标准,蓝牙标准最新版本蓝牙5在2016年6月被宣布。蓝牙使用短波特高频(UHF)无线电波,经由2.4至2.485GHz的ISM频段来进行通信,通信距离从几米到几百米不等。

优点: 2010年推出的蓝牙4.0,2013年推出的蓝牙4.1,以及2014年推出的蓝牙4.2为适应物联网发展推出很多优秀的特性: – 提出了“低功耗蓝牙”、“传统蓝牙”和“高速蓝牙”三种模式 – “低功耗蓝牙”模式下实现了低功耗,覆盖范围增强,最大范围可超过100米 – 支持复杂网络:针对一对一连接最优化,并支持星形拓扑的一对多连接等 – 智能连接:增加设置设备间连接频率的支持 – 提高安全性:使用AES-128 CCM加密算法进行数据包加密和认证 – Ipv6网络支持 – Bultooth Smart技术的蓝牙设备之间可以直接“对话” 等等。

缺点: 蓝牙的缺点主要是其各个版本不兼容,安全性差(4.0以后得到改进),组网能力差,以及在2.4GHz频率上的电波干扰问题等等。

Zigbee

Zigbee技术的功耗比较小,通信距离也比较短,是一种短距离低功耗的技术,主要应用于无线传感器及医疗场景等。ZigBee被标准化为IEEE 802.15.4,工作频段有三个:868MHz-868.6MHz、902MHz-928MHz和2.4GHz-2.4835GHz,其中最后一个频段世界范围内通用,16个信道,并且该频段为免付费、免申请的无线电频段。三个频段传输速率分别为20kbps,40kbps以及250kbps。

优点: ZigBee以其低功耗、低成本,低速率、高容量、支持Mash网络、支持大量网络节点以及有较高安全等优点一度被认为的物联网最有前景的通信技术。

缺点 :如今,实际中ZigBee远没有像Wi-Fi或者蓝牙那样得到广泛的应用,这是由于它复杂,成本高,抗干扰性差,ZigBee协议没有开源,以及和IP协议不的对接比较复杂等等又限制了它在实际中的应用。

UWB超宽带技术频段较为干净,没有其他频段的干扰,在高精度定位的场景下应用更多。

img

五:无线远距离通信技术

运营商提供的4G网络,是人们生活中应用最多的,甚至超过Wi-Fi。它可以做到长距离传输,速度也很可观,不管在室内还是室外,这种技术看起来很优越。但其功耗较大,只能应用于终端可自取电的物联网场景,如某公司的共享单车,利用太阳能电池板进行取电。

在远距离场景下,如果终端不能解决供电问题,那么需要一种具有更低功耗,覆盖范围更大的技术来满足这个场景下的物联网通信需求。于是在业务和技术的驱动下,一些专家和企业为了解决这个问题,研究出一种新型的通信技术——LPWAN,即低功耗广域网技术。

LPWAN的目标是为物联网应用中的M2M(设备到设备)通信场景而优化的远距离无线网络通讯技术。LPWAN技术的优势主要体现在:低速率,超低功耗,长距离,低吞吐,强覆盖。这些特点恰好说明,此项技术正是针对物联网在长距离传输的场景下开发的。具体应用如:城区覆盖、远程抄表、井盖检测以及近海渔船检测等。

img

LPWAN作为一个新的技术阵营,其内部分为两大派系:授权频段和非授权频段。授权频段又分为EC-GSM、eMTC以及NB-IoT;而非授权频段的“头牌”则是LoRa。

LoRa

LoRa来源于Long Range这个单词,是一种长距离通信的通信技术。LoRa技术基于线性Chirp扩频调制,延续了移频键控调制的低功耗特性,但是大大增加了通信范围。 Chirp扩频调制有长距离传输以及很好的抗干扰性,已经在军事和航天通信方面应用多年。极端情况下,LoRa的单个网关或者基站可以覆盖整个城市或者几十公里。技术方面的介绍可以参考官网:http://www.lora-alliance.org/What-Is-LoRa/Technology 。

与NB-IoT齐头并进发展的就是LoRa,与之不同的是LoRa技术使用非授权频段。它是由Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输技术。LoRa全称是Long Range,顾名思义,LoRa可以支持长距离传输。在中国,LoRa可以使用的频段有两个:CN779-787以及CN470-CN510。由于CN779-787最大发射功率只有10dBm(10mW),并没有“实用”的价值。所以人们更青睐于CN470-CN510这个频段,它的最大发射功率可以达到17dBm(50mW)。

类比于Wi-Fi联盟,LoRa也有对应的LoRa联盟,旨为共同建立标准和规范,LoRaWAN就是这样的产物。

img

基于成本的考虑,LoRa的模组单价在8-10美元左右,而且非授权频段也不需要支付额外的频谱成本,相比于NB-IoT而言,成本方面具有较大优势。在电池性能方面,由于NB-IoT在蜂窝授权频谱上工作,所以需要定时进行网络同步,会消耗相应的电量,而LoRa则无此担忧,但NB-IoT的这个特性也受到共享单车的热烈欢迎,可以基于此来做车辆的实时定位工作。另外,从商业模式上来看,NB-IoT属于运营商建网,业务方不需要自己来考虑基站的部署,比较省心;但与此同时,网络的质量、安全都是不可控的风险,且企业自身的增值也会受到一定阻碍。反观LoRa,属于企业自建网络,基站需自己部署,后续运维、优化等,覆盖的点位、网络质量及安全等维度都要自己负责。

LoRa联盟: LoRa联盟由IBM发起并主导,见官网:http://www.lora-alliance.org/,LoRa联盟里比较大一点的公司有Cisco, IBM, Semtech等等,更多的LoRa联盟成员,请看下面这个链接: http://www.lora-alliance.org/The-Alliance/Member-List

LoRa的应用场景: LoRa技术应用典型场景包括:超长电池寿命(几年),节点之间长距离通信,低速率(如每小时只要传递几次数据)。和NB-IoT技术一样,也可以牺牲低功耗指标来提高速率。

NB-IoT

最近特别火热的NB-IoT其实是NB-CIoT和NB-LTE两者的融合。NB-CIoT提出了全新的空口技术,较传统LTE网络改动较大,他满足于TSG GERAN#67会议上提出的五大目标,其亮点在于通信模块成本低于GSM及NB-LTE的模块。而NB-LTE则与现有的LTE兼容,特点是利于部署。在激烈的争论后,终于对两者加以融合,形成了NB-IoT的技术标准。

NB-IoT全称为窄带物联网,可以直接部署于LTE网络,良好的兼容性降低了部署的成本。其本身具有更低的功耗,理论上估算,承载NB-IoT的终端模组基于电池的待机时间可达10年之久。模块成本的降低,也让市场更多的公司开始应用这项技术,风靡全国的共享单车就是其一。某公司第三代的智能锁就采用了NB-IoT的模组,一方面是运营商的大力推广,另一方面也确实带来了价值。

GPS

GPRS是通用分组无线电服务(General Packet Radio Service)的缩写,GPRS是终端和通信基站之间的一种远程通信技术。 无线电服务最早采用模拟通信技术,被成为第一代移动通信技术,后来采用数字通信技术,称为第二代移动通信技术,其中全球移动通讯系统(Global System for Mobile Communications),即GSM的应用最广泛最为成功。GSM主要是为了传输话音设计的,话音在传输时,独占一个频道。 GPRS可说是GSM的延续,它以封包方式来传输数据,不独占频道,因此可以较好利用GSM上空闲的频道资源。GPRS的传输速率可达到56~114Kbps。用户使用该项数据业务,可以连接到电信运营商的通信基站,进而连接到互联网,获取互联网信息。GPRS由欧洲电信标准委员会(ETSI)推出,后来移交给第三代合作伙伴计划(3rd Generation Partnership Project)即3GPP负责。

优点: 由于GSM的网络信号覆盖范围很广,实际上可以使用GPRS业务的地域也很广,这是GPRS技术的主要优点。 其次,GPRS终端可以在信号覆盖范围内自由地漫游,开发商无需在开发任何其他通信设备(由运营商负责),用户使用方便。 最后,由于移动通信终端的普及,其成本已经大大降低,因此在物联网中采用GPRS通信技术,其硬件成本相比Wi-Fi或者ZigBee都有较大的优势。

缺点: GPRS终端在通信时要使用电信运营商的基础设施,因此需要缴纳一定的费用,即数据流量费,这个服务费用限制了大量设备连接到网络。 GPRS的速率较低,是另外一个问题。 GPRS通信质量受信号强弱影响较大,无信号覆盖或者较弱的地方通信效果很差,可能影响业务的完成。

EC-GSM

随着LPWAN的兴起,传统的GPRS应用于物联网的劣势愈发明显。2014年,3GPP研究项目提出,将窄带(200kHz)物联网技术迁移到GSM上,寻求比传统GPRS高20dB的更广的覆盖范围,并提出五大目标:提升室内覆盖性能、支持大规模设备连接、减小设备复杂性、减小功耗和时延。到了2015年,TSG GERAN #67会议报告表示,EC-GSM已满足5大目标。但随着R13 NB-IoT标准冻结之后,人们将更多精力投入到了重新定义的标准当中。

eMTC

eMTC的概念在R13中被正式命名,以前的R12被称为Low-Cost MTC,它是基于LTE演进的物联网技术。eMTC基于蜂窝网进行部署,用户设备通过支持1.4MHz的射频和基带带宽,可直接接入现有的LTE网络。eMTC的关键能力在于速率高(相较于GPRS、zigbee等)、可移动、可定位以及支持语音。截止目前,没有哪个物联网技术能够成为真正的主流,对技术本身而言,没有绝对的完美;从业务出发,更是需要结合业务特点、商业模式去选择更适合的物联网技术。

推荐文章